

#### Before we start

- please raise your zoom hand for any category that you consider a match!
  - are you:
    - an undergraduate student?
    - a post-graduate student?
    - a postdoc?
    - a senior scientist / professor?

- have you ever worked on a (past/present/future)
  - e+e- experiment?
  - pp experiment?
  - other particle physics experiments?
  - particle physics theory?

- why are you here:
  - you plan to do an e+e- study for Snowmass
    - have already topic in mind
    - still looking for a topic
  - · just curious, but no concrete plan to do a Snowmass study
  - co-organiser / convener



## Parametrised, fast and full (=geant4-based) simulations

- delphes2lcio: an Icio application which makes Delphes (parametrised detector simulation) write out LCIO (https://github.com/iLCSoft/LCIO/tree/ master/examples/cpp/delphes2lcio)
- SGV: Simulation a Grande Vitesse (https://www.desy.de/~berggren/sgv\_ug/sgv\_ug.html) detailed fast simulation from "first principles" (nearly no parametrisations!)
- iLCSoft (https://github.com/iLCSoft): software suite for full simulation and reconstruction of ILC & CLIC detectors



- your analysis in root or Julia or ... - transparent switch to next-detailed simulation level



## Parametrised, fast and full (=geant4-based) simulations

- delphes2lcio: an Icio application which makes Delphes (parametrised detector simulation) write out LCIO (https://github.com/iLCSoft/LCIO master/examples/cpp/delphes2lc
- SGV: Simulation a Grande Vitess (https://www.desy.de/~berggren/sgv\_ug/sgv\_ug.html) detailed fast simulation from "first principles" (nearly no parametrisations!)
- iLCSoft (https://github.com/iLCSoft): software suite for full simulation and reconstruction of ILC & CLIC detectors

NOTE: precision e+e- studies often require full simulation - see <a href="mailto:arXiv:2007.03650">arXiv:2007.03650</a> for discussion of study topics vs level of detail in simulation!

DELminiDST SGVminiDST ILD/SiDminiDST

LCIO miniDST data format

generator-level events, e.g. stdhep

- your analysis in root or Julia or ... - transparent switch to next-detailed simulation level



#### LCIO & miniDST

- LCIO (Linear Collider I/O, part of iLCSoft, <a href="https://github.com/iLCSoft/LCIO">https://github.com/iLCSoft/LCIO</a>):
  - event data model and persistency framework
  - implemented for C++, Fortran, Java, Go, Python
     => will see root and jupyter examples today!
- miniDST, https://github.com/ILDAnaSoft/miniDST:
  - high-level LCIO-file containing information very similar to Delphes root tree
  - can be filled from Delphes, SGV and full simulation
- analyses based on miniDST can easily switch between parametrised, fast and full simulation!



- your analysis in root or Julia or ... - transparent switch to next-detailed simulation level





- LCIO (Linear Collider I/O, part of iLCSoft, <a href="https://github.com/iLCSoft/LCIO">https://github.com/iLCSoft/LCIO</a>):
  - event data model and persistency framework
  - implemented for C++, Fortran, Java, Go, Python
     => will see root and jupyter examples today!
- miniDST, <a href="https://github.com/ILDAnaSoft/miniDST">https://github.com/ILDAnaSoft/miniDST</a>:
  - high-level LCIO-file containing information very similar to Delphes root tree
  - can be filled from Delphes, SGV and full simulation
- analyses based on miniDST can easily switch between parametrised, fast and full simulation!



LCIO is *not* ILC-specifc it's used by all future e+e- colliders
in one way or the other!

transparent switch to next-detailed simulation level



# The miniDST format

| COLLECTION NAME (SGV / ILD full sim)                                                                                                                        | COLLECTION NAME<br>(Delphes)                                                                                | EXPLANATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PandoraPFOs IsolatedElectrons IsolatedMuons IsolatedTaus IsolatedPhotons                                                                                    | PFOs IsolatedElectrons IsolatedMuons IsolatedTaus IsolatedPhotons                                           | particle flow objects from the main detector, incl. event shape variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Refined2Jets Refined3Jets Refined4Jets Refined5Jets Refined6Jets BCalPF0s PrimaryVertex PrimaryVertex_RP MCParticlesSkimmed MCTruthRecoLink RecoMCTruthLink | Durham2Jets Durham4Jets Durham5Jets Durham6Jets N/A N/A N/A N/A MCParticles MCTruthRecoLink RecoMCTruthLink | PandoraPFOs minus "IsolatedX" forced into 2 jets (Durham algorithm, plus flavour tag) PandoraPFOs minus "IsolatedX" forced into 3 jets (Durham algorithm, plus flavour tag) PandoraPFOs minus "IsolatedX" forced into 4 jets (Durham algorithm, plus flavour tag) PandoraPFOs minus "IsolatedX" forced into 5 jets (Durham algorithm, plus flavour tag) PandoraPFOs minus "IsolatedX" forced into 6 jets (Durham algorithm, plus flavour tag) particle flow objects from the most forward calorimeter  "reconstructed particle" representing the primary vertex  links from MCParticles to PandoraPFOs links from PandoraPFOs to MCParticles |



## Getting started

- open <a href="https://github.com/ILDAnaSoft/miniDST">https://github.com/ILDAnaSoft/miniDST</a> in your browser all the following parts of the tutorial are described there!
- log in to your working computer, e.g. the OSG:
   ssh -Y [username]@login.snowmass21.io
- use bash shell:bash
- download the examples:
   git clone https://github.com/ILDAnaSoft/miniDST.git
- change to miniDST folder:
   cd miniDST
- set up versions of root, cmake, gcc, python etc:
  - . setenv4LCIO.sh
- next: download and install LCIO => next slide





- go to <a href="https://github.com/iLCSoft/LCIO">https://github.com/iLCSoft/LCIO</a>
- go one directory up: cd ...
- download LCIO:
   git clone https://github.com/iLCSoft/LCIO.git
- change to LCIO folder, create and change to build directory:
   cd LCIO; mkdir build; cd build
- run cmake with option to build root dictionaries and C++17:
   cmake -DBUILD ROOTDICT=ON -D CMAKE CXX STANDARD=17 ..
- make it:make -j 4 install
- test your installation:make test
- set up paths etc:cd ..; ./setup.sh





- go to <a href="https://github.com/iLCSoft/LCIO">https://github.com/iLCSoft/LCIO</a>
- go one directory up: cd ...
- download LCIO:
   git clone https://github.com/iLCSoft/LCIO.git
- change to LCIO folder, create and change to build directory:
   cd LCIO; mkdir build; cd build
- run cmake with option to build root dictionaries and C++17:
   cmake -DBUILD\_ROOTDICT=ON -D CMAKE\_CXX\_STANDARD=17 ..
- make it:make -j 4 install
- test your installation:make test
- set up paths etc:cd ..; ./setup.sh

Hint: If you have (rather recent) gcc, python, root and cmake on your laptop / local desktop, try to install LCIO there for more convenient interactive work in root!

### The first plot

```
    go to back to miniDST/examples:

  cd ../miniDST/examples

    get the data:

    either: download from links given on <a href="https://github.com/ILDAnaSoft/miniDST">https://github.com/ILDAnaSoft/miniDST</a>

    or link to existing copy on OSG:

     ln -s /collab/project/snowmass21/data/ilc/tutorial data
 start root:
                  (on your local computer, also -I)
  root -b

    this reads the provided .rootlogon.C

  => most of it is optional and a matter of taste - the crucial part is:
  gInterpreter->AddIncludePath("$LCIO");
  gSystem->Load("${LCIO}/lib/liblcio.so");
  gystem->Load("${LCIO}/lib/liblcioDict.so");

    run first macro:

  x higgs recoil.C ("data/rv01-16-p10 250.sv01-14-01-
  p00.mILD_o1_v05.E250-TDR_ws.I106479.Pe2e2h.eL.pR-00001-
  ILDminiDST.slcio");
quit root:
  · q
```



## The first plot

```
go to back to miniDST/examples:cd ./miniDST/examples
```

- get the data:
  - either: download from links given on <a href="https://github.cd">https://github.cd</a>
  - or link to existing copy on OSG:
     ln -s /collab/project/snowmass21/data/
- start root:
   root -b (on your local computer, also -l)
- this reads the provided .rootlogon.C
   => most of it is optional and a matter of taste the cruc glnterpreter->AddIncludePath("\$LCIO");
   gSystem->Load("\${LCIO}/lib/liblcio.so");
   gystem->Load("\${LCIO}/lib/liblcioDict.so");
- run first macro:
  .x higgs\_recoil.C ("data/rv01-16-p10\_250 p00.mILD\_o1\_v05.E250-TDR\_ws.I106479.Pe2e ILDminiDST.slcio");
- quit root:



· q































## Interlude 1: nomenclature of processes

- more details c.f. <a href="https://indico.cern.ch/event/868940/contributions/3814465/">https://indico.cern.ch/event/868940/contributions/3814465/</a>
- classify physics processes by the number of (fermions + antifermions) in the final state:
  - ee -> 2f: ee -> f fbar (f = e, mu, tau, u, d, s, c, b, nu)
  - ee -> 4f: mostly WW / ZZ, but taking into account **all** contributing matrix elements and their interference
  - ee -> 6f: mostly ttbar, some ZZZ, WWZ, but again, all MEs + interference considered!
  - "SM" samples: mass of Higgs is set to huge value, so that Feynman diagrams containing the Higgs are not included
  - instead have separately: ee -> ffbar h
- file name contains:

rv01-16-p10\_250.sv01-14-01-p00.mlLD\_o1\_v05.E250-TDR\_ws.I106479.Pe2e2h.eL.pR-00001-ILDminiDST.slcio



## Interlude 1: nomenclature of processes

- more details c.f. <a href="https://indico.cern.ch/event/868940/contributions/3814465/">https://indico.cern.ch/event/868940/contributions/3814465/</a>
- classify physics processes by the number of (fermions + antifermions) in the final state:
  - ee -> 2f: ee -> f fbar (f = e, mu, tau, u, d, s, c, b, nu)
  - ee -> 4f: mostly WW / ZZ, but taking into account **all** contributing matrix elements and their interference
  - ee -> 6f: mostly ttbar, some ZZZ, WWZ, but again, all MEs + interference considered!
  - "SM" samples: mass of Higgs is set to huge value, so that Feynman diagrams containing the Higgs are not included
  - instead have separately: ee -> ffbar h
- file name contains:

rv01-16-p10\_250.sv01-14-01-p00.mlLD\_o1\_v05.E250-TDR\_ws.I106479.Pe2e2h.eL.pR-00001-ILDminiDST.slcio

process:
e2 = muon, so
mumu h
(I dentification number)





- more details c.f. <a href="https://indico.cern.ch/event/868940/contributions/3814465/">https://indico.cern.ch/event/868940/contributions/3814465/</a>
- classify physics processes by the number of (fermions + antifermions) in the final state:
  - ee -> 2f: ee -> f fbar (f = e, mu, tau, u, d, s, c, b, nu)
  - ee -> 4f: mostly WW / ZZ, but taking into account **all** contributing matrix elements and their interference
  - ee -> 6f: mostly ttbar, some ZZZ, WWZ, but again, all MEs + interference considered!
  - "SM" samples: mass of Higgs is set to huge value, so that Feynman diagrams containing the Higgs are *not* included
  - instead have separately: ee -> ffbar h
- file name contains:

polarisation: electron L (eft-handed) positron R (ight-handed)

rv01-16-p10\_250.sv01-14-01-p00.mlLD\_o1\_v05.E250-TDR\_ws.I106479.Pe2e2h.eL.pR-00001-ILDminiDST.slcio

process:
e2 = muon, so
mumu h
(I dentification number)





- more details c.f. <a href="https://indico.cern.ch/event/868940/contributions/3814465/">https://indico.cern.ch/event/868940/contributions/3814465/</a>
- classify physics processes by the number of (fermions + antifermions) in the final state:
  - ee -> 2f: ee -> f fbar (f = e, mu, tau, u, d, s, c, b, nu)
  - ee -> 4f: mostly WW / ZZ, but taking into account **all** contributing matrix elements and their interference
  - ee -> 6f: mostly ttbar, some ZZZ, WWZ, but again, all MEs + interference considered!
  - "SM" samples: mass of Higgs is set to huge value, so that Feynman diagrams containing the Higgs are *not* included
  - instead have separately: ee -> ffbar h
- file name contains:

polarisation: electron L (eft-handed) positron R (ight-handed)

rv01-16-p10\_250.sv01-14-01-p00.mlLD\_o1\_v05.E250-TDR\_ws.I106479.Pe2e2h.eL.pR-00001-ILDminiDST.slcio

process: e2 = muon, so mumu h

& file format

serial file number

mumu n
(I dentification number)

## Interlude 1: nomenclature of processes

- more details c.f. https://indico.cern.ch/event/868940/contributions/3814465/
- classify physics processes by the number of (fermions + antifermions) in the final state:
  - ee -> 2f: ee -> f fbar (f = e, mu, tau, u, d, s, c, b, nu)
  - ee -> 4f: mostly WW / ZZ, but taking into account **all** contributing matrix elements and their interference
  - ee -> 6f: mostly ttbar, some ZZZ, WWZ, but again, all MEs + interference considered!
  - "SM" samples: mass of Higgs is set to huge value, so that Feynman diagrams containing the Higgs are *not* included
  - instead have separately: ee -> ffbar h
- file name contains:

polarisation: electron L (eft-handed) positron R (ight-handed)

rv01-16-p10\_250.sv01-14-01-p00.mlLD\_o1\_v05.E250-TDR\_ws.I106479.Pe2e2h.eL.pR-00001-ILDminiDST.slcio

energy and beam parameters: 250 GeV, TDR\_ws (I dentification number)

process: e2 = muon, so mumu h

serial file number & file format

## Interlude 1: nomenclature of processes

- more details c.f. <a href="https://indico.cern.ch/event/868940/contributions/3814465/">https://indico.cern.ch/event/868940/contributions/3814465/</a>
- classify physics processes by the number of (fermions + antifermions) in the final state:
  - ee -> 2f: ee -> f fbar (f = e, mu, tau, u, d, s, c, b, nu)
  - ee -> 4f: mostly WW / ZZ, but taking into account **all** contributing matrix elements and their interference
  - ee -> 6f: mostly ttbar, some ZZZ, WWZ, but again, all MEs + interference considered!
  - "SM" samples: mass of Higgs is set to huge value, so that Feynman diagrams containing the Higgs are *not* included
  - instead have separately: ee -> ffbar h
- file name contains:

electron L (eft-handed)
detector model
positron R (ight-handed)

rv01-16-p10\_250.sv01-14-01-p00.mlLD\_o1\_v05.E250-TDR\_ws.I106479.Pe2e2h.eL.pR-00001-ILDminiDST.slcio

energy and beam parameters: 250 GeV, TDR\_ws

process: e2 = muon, so mumu h

polarisation:

mumu n
(I dentification number)

serial file number

& file format





- more details c.f. <a href="https://indico.cern.ch/event/868940/contributions/3814465/">https://indico.cern.ch/event/868940/contributions/3814465/</a>
- classify physics processes by the number of (fermions + antifermions) in the final state:
  - ee -> 2f: ee -> f fbar (f = e, mu, tau, u, d, s, c, b, nu)
  - ee -> 4f: mostly WW / ZZ, but taking into account **all** contributing matrix elements and their interference
  - ee -> 6f: mostly ttbar, some ZZZ, WWZ, but again, all MEs + interference considered!
  - "SM" samples: mass of Higgs is set to huge value, so that Feynman diagrams containing the Higgs are *not* included
  - instead have separately: ee -> ffbar h
- file name contains:

detector model

polarisation: electron L (eft-handed) positron R (ight-handed)

rv01-16-p10\_250.sv01-14-01-p00.mlLD\_o1\_v05.E250-TDR\_ws.I106479.Pe2e2h.eL.pR-00001-ILDminiDST.slcio

iLCSoft versions for reconstruction and simulation

energy and beam parameters: 250 GeV, TDR\_ws

process: e2 = muon, so mumu h

mumu h
(I dentification number)

serial file number

& file format





- restart root:root -b
- .x higgs recoil with bkg.C ("data/");
- you should then have this plot in
  - recoil\_plot\_with\_bkg.pdf & recoil\_plot\_with\_bkg.root
- macro takes as further (optional) arguments:
  - double lumi\_target=900., // 900 fb-1
  - double epol\_target=-0.8, // P(e-) =-80%
  - double ppol\_target=+0.3. // P(e+)=+30%
- try to change these settings to the opposite polarisation signs and redo the plot!



## Interlude 2: Why these funny values?





- beam polarisation absolute values:
  - Electron beam:  $|P(e^-)| \ge 80\%$
  - Positron beam: |P(e+)| = 30%, at 500 GeV upgradable to 60% at 1 TeV assume 20%
- Notation: (P(e-), P(e+))
- sharing of luminosity between polarisation signs:

| √s      | $\int \mathscr{L} dt$ | -+                   | +-                   | ++                   |                      |
|---------|-----------------------|----------------------|----------------------|----------------------|----------------------|
| 250 GeV | 2 ab-1                | 0.9 ab <sup>-1</sup> | 0.9 ab <sup>-1</sup> | 0.1 ab <sup>-1</sup> | 0.1 ab <sup>-1</sup> |
| 350 GeV | 200 fb <sup>-1</sup>  | 135 fb <sup>-1</sup> | 45 fb <sup>-1</sup>  | 10 fb <sup>-1</sup>  | 10 fb <sup>-1</sup>  |
| 500 GeV | 4 ab <sup>-1</sup>    | 1.6 ab <sup>-1</sup> | 1.6 ab <sup>-1</sup> | 0.4 ab <sup>-1</sup> | 0.4 ab <sup>-1</sup> |
| 1 TeV   | 8 ab <sup>-1</sup>    | 3.2 ab <sup>-1</sup> | 3.2 ab <sup>-1</sup> | 0.8 ab <sup>-1</sup> | 0.8 ab <sup>-1</sup> |
| 91 GeV  | 100 fb <sup>-1</sup>  | 40 fb <sup>-1</sup>  | 40 fb <sup>-1</sup>  | 10 fb <sup>-1</sup>  | 10 fb <sup>-1</sup>  |
| 161 GeV | 500 fb <sup>-1</sup>  | 340 fb <sup>-1</sup> | 110 fb <sup>-1</sup> | 25 fb <sup>-1</sup>  | 25 fb <sup>-1</sup>  |

all up-to-date numbers in ILC input document to the European strategy

detailed reasoning c.f. arXiv:1506.07830

### Interlude 2: Why these funny values?





- beam polarisation absolute values:
  - Electron beam:  $|P(e^-)| \ge 80\%$
  - Positron beam: |P(e+)| = 30%, at 500 GeV upgradable to 60% at 1 TeV assume 20%
- Notation: ( P(e-) , P(e+) )
- sharing of luminosity between polarisation signs:

| √s      | $\int \mathscr{L} dt$ | -+                   | +-                   | ++                   |                      |
|---------|-----------------------|----------------------|----------------------|----------------------|----------------------|
| 250 GeV | 2 ab-1                | 0.9 ab <sup>-1</sup> | 0.9 ab <sup>-1</sup> | 0.1 ab <sup>-1</sup> | 0.1 ab <sup>-1</sup> |
| 350 GeV | 200 fb <sup>-1</sup>  | 135 fb <sup>-1</sup> | 45 fb <sup>-1</sup>  | 10 fb <sup>-1</sup>  | 10 fb <sup>-1</sup>  |
| 500 GeV | 4 ab <sup>-1</sup>    | 1.6 ab <sup>-1</sup> | 1.6 ab <sup>-1</sup> | 0.4 ab <sup>-1</sup> | 0.4 ab <sup>-1</sup> |
| 1 TeV   | 8 ab <sup>-1</sup>    | 3.2 ab <sup>-1</sup> | 3.2 ab <sup>-1</sup> | 0.8 ab <sup>-1</sup> | 0.8 ab <sup>-1</sup> |
| 91 GeV  | 100 fb <sup>-1</sup>  | 40 fb <sup>-1</sup>  | 40 fb <sup>-1</sup>  | 10 fb <sup>-1</sup>  | 10 fb <sup>-1</sup>  |
| 161 GeV | 500 fb <sup>-1</sup>  | 340 fb <sup>-1</sup> | 110 fb <sup>-1</sup> | 25 fb <sup>-1</sup>  | 25 fb <sup>-1</sup>  |



detailed reasoning c.f. arXiv:1506.07830



## Future e<sup>+</sup>e<sup>-</sup> Colliders and (longitudinally) Polarised Beams

- · Longitudinally polarised beams are a special feature of Linear e<sup>+</sup>e<sup>-</sup> Colliders:
  - SLC:  $P(e^{-}) = \pm 80\%$ ,  $P(e^{+}) = 0\%$
  - ILC:  $P(e^{-}) = \pm 80\%$ ,  $P(e^{+}) = \pm 30\%$  (upgrade 60%)
  - CLIC:  $P(e^{-}) = \pm 80\%$ ,  $P(e^{+}) = 0\%$
- Electroweak interactions highly sensitive to chirality of fermions: SU(2) x U(1)
  - every cross section depends on beam polarisations
  - with both its beams polarised, ILC is "four colliders in one":

General references on polarised e<sup>†</sup>e<sup>–</sup>physics:

- · arXiv:1801.02840
- Phys. Rept. 460 (2008) 131-243



 $P = \frac{N_R - N_L}{N_R + N_r}$ 





### background suppression:

e<sup>+</sup>e<sup>-</sup>→WW / vv
 strongly P-dependent since t-channel only
 for e<sup>-</sup>Le<sup>+</sup><sub>R</sub>



### signal enhancement:

- Higgs production in WW fusion
- many BSM processes



have strong polarisation dependence => higher S/B

### chiral analysis:

 SM: Z and γ differ in couplings to left- and right-handed fermions



 BSM: chiral structure unknown, needs to be determined!

#### redundancy & control of systematics:

- "wrong" polarisation yields "signal-free" control sample
- flipping positron polarisation controls nuisance effects on observables relying on electron polarisation
- essential: fast helicity reversal for both beams!



#### Polarised cross sections

$$\sigma_{P_{e^{-}P_{e^{+}}}} = \frac{1}{4} \{ (1 + P_{e^{-}})(1 + P_{e^{+}})\sigma_{RR} + (1 - P_{e^{-}})(1 - P_{e^{+}})\sigma_{LL} + (1 + P_{e^{-}})(1 - P_{e^{+}})\sigma_{RL} + (1 - P_{e^{-}})(1 + P_{e^{+}})\sigma_{LR} \}.$$

- For  $\sigma_{RR}$ ,  $\sigma_{LR}$  etc, use the generator cross sections given in the event header: float xsection = evt->parameters().getFloatVal("CrossSection fb");
- pre-factors are the respective event weights:

```
// polarisation weights for {LR, RL, LL, RR} events, as example for target P(e-,e+)=(-80%,+30%):
// LR: polweight = (1-epol_target)*(1+ppol_target)/4.; // -80%,+30% => 1.8 * 1.3 / 4. = 0.585
// RL: polweight = (1+epol_target)*(1-ppol_target)/4.; // -80%,+30% => 0.2 * 0.7 / 4. = 0.035
// LL: polweight = (1-epol_target)*(1-ppol_target)/4.; // -80%,+30% => 1.8 * 0.7 / 4. = 0.315
// RR: polweight = (1+epol_target)*(1+ppol_target)/4.; // -80%,+30% => 0.2 * 1.3 / 4. = 0.065
```

- Note: data sets with (sign(Pe-), sign P(e+)) = (-,+) and (+,-) often have
  - different initial S/B ratio
  - different background composition => different kinematics etc
- => analyse data sets with different polarisation signs separately, different cut optimisation either combine results afterwards, or exploit polarisation dependence in interpretation



### Useful tools

anajob [your .slcio file] | less
prints (after some header information) the list of collections available on each event,
incl. their number of elements

=> try it - what do you see?

 dumpevent [your .slcio file] [event number] | less prints the content of all collections on the given event

=> try it - and find

- the IsolatedMuons collection
- the Refined2Jet collection



## Now it is your turn!

- Try to improve the signal-to-background ratio by applying a cut on the sum of the b-likeliness values of the two jets.
- For this, read in the Refined2Jets collection, check that it is there and contains 2 jets.
- Then get the b-likeliness values (MVA output between 0 and 1).
- You find an example of how to access jets and b-tag information in <a href="mailto://examples/jet\_btag.C">/examples/jet\_btag.C</a>.
- Take a look at this (of course you can also run it if you like!) and modify your higgs\_recoil\_with\_bkg.C such that the recoil mass histograms are only filled if the sum of the two b-likeliness values > 1.



#### How to continue

- how to get more data:
  - regularly check <a href="http://ilcsnowmass.org">http://ilcsnowmass.org</a> large data sets (SM + Higgs) will appear there soon:
    - Delphes-miniDSTs of for 250 GeV, 350 GeV, 500 GeV, 1 TeV (from ILC TDR MC production, Whizard 1.95)
    - SGV-miniDSTs of new 250 GeV Whizard 2.8.4 samples
    - ILD-miniDSTs (full simulation) of TDR MC production priorisation depending on user requests!
  - if you need additional samples eg BSM signals: **contact us!** => depending on size/ complexity of request, we'll either produce them or teach you how to produce them
- choose a topic: take a look into <u>arXiv:2007.03650</u> and don't hesitate to contact us if you have questions!
- further tutorials upcoming (tbd):
  - Whizard
  - delphes2lcio
  - DD4HEP / Marlin
  - e+e- analysis dos & don'ts

#### Contact information

- LCC Physics Working Group conveners:
  - Keisuke Fujii (keisuke.fujii@kek.jp), Christophe Grojean (christophe.grojean@desy.de),
     Michael Peskin (mpeskin@ slac.stanford.edu)
- ILC detector concept group physics coordinators:
  - SiD: Tim Barkow (timb@slac.stanford.edu)
  - ILD: Keisuke Fujii (keisuke.fujii@kek.jp), Jenny List (jenny.list@desy.de)
- ILC contacts for the various Energy Frontier working groups
  - EF01: Shin-ichi Kawada (shin-ichi.kawada@desy.de)
  - EF02: Maxim Perelstein (m.perelstein@cornell.edu)
  - EF03: Roman Poeschl (poeschl@lal.in2p3.fr)
  - EF04: Sunghoon Jung (sunghoonj@snu.ac.kr)
  - EF05: Juergen Reuter (juergen.reuter@desy.de)
  - EF08: Mikael Berggren (mikael.berggren@desy.de)
  - EF09: Taikan Suehara (suehara@phys.kyushu-u.ac.jp)
  - EF10: Aleksander Filip Zarnecki (Filip.Zarnecki@fuw.edu.pl)
  - TF07: Mihoko Nojiri (nojiri@post.kek.jp)
- Technical support: ilc-snowmass@slac.stanford.edu; ilc-snowmass on Slack

#### This tutorial:

Jan Strube: jstrube@uoregon.edu
Chris Potter: ctp@uoregon.edu
Jenny List: jenny.list@desy.de

and behind the scenes:

Norman Graf: ngraf@slac.stanford.edu

Daniel Jeans: <u>daniel.jeans@kek.jp</u>

Remi Ete: remi.ete@desy.de

Frank Gaede: <a href="mailto:frank.gaede@desy.de">frank Gaede: frank.gaede@desy.de</a>